		1				2				3		
ИС	балл	матем.	κ^o	κ^m	балл	матем.	κ^o	κ^m	балл	матем.	κ^o	κ^m
BM-1	524	252	1,36	1,39	411	261	1,22	1,40	484	167	1,16	1,13
BM-2	500	241	1,30	1,34	333	241	0,96	1,29	404	145	1,00	1,08
BM-18	176	69	$0,\!45$	0,36								
BM-19	123	43	0,29	0,20								
BM-20	66	66	0,19	0,42	271	127	0,84	0,70	311	120	1,86	1,00

В первом семестре в группе обучалось 20 студентов, из них коэффициент успешности κ^o не менее единицы ($\kappa^o \geqslant 1$) имеют 12 студентов (60 %), т. е. успешными по совокупности дисциплин являются более половины студентов. Коэффициент κ^m показал, что наиболее успешными по дисциплинам математического цикла являются 13 студентов (65 %). Во втором семестре в группе обучалось 18 студентов. Наиболее успешными по совокупности дисциплин являются 10 студентов (55 %), а по совокупности дисциплин математического цикла 11 студентов (61 %). В третьем семестре обучалось 18 студентов. Как по совокупности дисциплин математического цикла, так и по совокупности всех дисциплин наиболее успешными являются 13 студентов (72 %).

На основании полученных результатов можно делать различные выводы. Например, если у некоторого студента $\kappa^o > \kappa^m$, то у него, возможно, имеются проблемы при освоении цикла математических дисциплин. Кроме того, можно проследить динамику успеваемости студентов группы в течение всего периода обучения, выделяя не только наиболее успешных студентов, но и обращая особое внимание на тех студентов, чьи показатели имеют тенденцию к уменьшению (возможно, у них имеются проблемы социального плана).

Заметим, что таким же образом можно вычислить коэффициенты успешности относительно потока и соответственно выстроить рейтинги студентов в потоке и, в частности, выявить сильные и слабые группы. Описанную методику можно применять там, где есть необходимость выстраивать рейтинги по тем или иным показателям.

Rodionova A.G., Novikova E.V. USE OF SPECIAL FUNCTIONAL MINIMIZATION TO CALCULATE RANKING STUDENT

The authors propose a technique of forming a separate ranking as a student under the group, and on the background of the school stream. Technique has been successfully tested at the Faculty of Information Technology of Udmurt State University.

Key words: evaluation of training activities; module-rating system; rating.

УДК 512.18

МАТРИЦА СТРУКТУРЫ БИЛИНЕЙНОЙ ОКРЕСТНОСТНОЙ СИСТЕМЫ

© С.С. Роенко

Ключевые слова: билинейная окрестностная система; параметрическая идентификация. Рассмотрена разработка и использование специальной матрицы структуры связей узлов системы; приведен пример построения билинейной окрестностной модели для системы из двух узлов с использованием матрицы структуры.

Во многих прикладных задачах степень влияния узлов друг на друга может быть нечеткой [1], а структура систем – переменной. Поэтому для решения таких задач актуальной

является разработка и введение в модель специальной матрицы структуры связей, что позволяет описывать с помощью этой модели различные классы окрестностных систем, в частности, четко- и нечетко-окрестностные, а также изменять структуру модели посредством изменения матрицы структуры для улучшения результатов идентификации и управления.

Определим матрицу структуры. Матрица структуры R – матрица, составленная из элементов матриц окрестностей по входу O_{ν} , состоянию O_x и элементов матрицы, полученной с помощью операции построчного элементного умножения матриц $O_{\nu} \boxtimes O_x$:

$$R = [R_x, R_\nu, R_{x\nu}] = [O_x, O_\nu, O_\nu \boxtimes O_x]$$

Определим специальную операцию над матрицами. Построчное элементное умножение матриц O_x , O_ν размерностей $n \times n$ есть операция нахождения матрицы $O_\nu \boxtimes O_x$ размерности $n \times n^2$, все элементы которой равны произведению соответствующих элементов строк матриц O_x , O_ν :

$$O_{x\nu} = O_{\nu} \boxtimes O_{x} = \begin{bmatrix} o_{x11} & o_{x12} \\ o_{x21} & o_{x22} \end{bmatrix} \boxtimes \begin{bmatrix} o_{\nu11} & o_{\nu12} \\ o_{\nu21} & o_{\nu22} \end{bmatrix} = \begin{bmatrix} o_{x11}o_{\nu11} & o_{x11}o_{\nu12} & o_{x12}o_{\nu11} & o_{x12}o_{\nu12} \\ o_{x21}o_{\nu21} & o_{x21}o_{\nu12} & o_{x22}o_{\nu21} & o_{x22}o_{\nu22} \end{bmatrix}$$

Рассмотрим пример составления матрицы структуры R для билинейной окрестностной системы из двух узлов. Заданы матрицы окрестностей системы:

$$O_x = \begin{bmatrix} 0, 5 & 0, 4 \\ 0, 8 & 1 \end{bmatrix}, \ O_\nu = \begin{bmatrix} 0, 9 & 0 \\ 0 & 0, 6 \end{bmatrix}$$

Тогда матрица структуры $R = [R_x, R_\nu, R_{x\nu}]$ будет иметь следующий вид:

$$\begin{bmatrix} 0,5 & 0,4 & 0,9 & 0 & 0,45 & 0 & 0,36 & 0 \\ 0,8 & 1 & 0 & 0,6 & 0 & 0,48 & 0 & 0,6 \end{bmatrix}$$

Соответственно, билинейная окрестностная система в данном случае будет иметь следующий вид:

$$0,5w_x[1,1]x[1] + 0,4w_x[1,2]x[2] + 0,9w_\nu[1,1]\nu[1] + 0,45w_{x\nu}[1,1,1]x[1]\nu[1] + 0,36w_{x\nu}[1,2,1]x[2]\nu[1] = 0$$

$$0, 8w_x[2,1]x[1] + 1w_x[2,2]x[2] + 0, 6w_\nu[2,2]\nu[2] + 0, 48w_{x\nu}[2,1,2]x[1]\nu[2] + 0, 6w_{x\nu}[2,2,2]x[2]\nu[2] = 0$$

Таким образом, использование матрицы структуры в билинейной окрестностной модели открывает возможности по изменению структуры модели посредством изменения матрицы структуры для достижения лучших результатов в идентификации и управлении сложными системами.

ЛИТЕРАТУРА

1. *Блюмин С.Л., Шмырин А.М., Шмырина О.А.*Представления нелинейных нечетко-окрестностных систем // Проблемы управления. 2005. № 2. С. 37-40.

БЛАГОДАРНОСТИ: Работа поддержана грантом РФФИ (код проекта 11-08-97525 р-центр а).

Roenko S.S. MATRIX OF STRUCTURE OF BILINEAR NEIGHBORHOOD SYSTEM

Development and using of a special matrix of system node connections is considered; an example of creating the general bilinear neighborhood model of a system of two nodes using matrix of a structure is presented.

Key words: bilinear neighborhood system; parametric identification.